Превью для статьи

Доверительный интервал коэффициента Джини. Что это?

При валидации моделей классификации иногда используется такой показатель, как «доверительный интервал коэффициента Джини». По отдельности термины «доверительный интервал» и коэффициент Джини известны и понятны. Но их сочетание может вызвать вопросы даже у специалиста, знакомого со статисткой.

Превью для статьи

Использование технологий машинного обучения в аудите: примеры эффективного применения

Аудит является неотъемлемой частью бизнес-практики, обеспечивая независимую оценку финансовой отчетности и процессов в организации. Аудиторы полагаются на опыт и статистическую выборку для ручной проверки сотен документов и свидетель-ств, определения сильных сторон и углубленного анализа организационных процедур и транзакций. Однако этот ручной процесс превратил аудит в трудоемкую и ресурсоемкую деятельность.

Превью для статьи

Использование Insightface для быстрого поиска и сравнения лиц на изображениях

Рассмотрю кейс поиска «близнецов» в паспортных данных, которые были размещены в pdf-файлах, насчитывающих десятки, а порой и сотни страниц

Превью для статьи

Codeium и StarCoder: нейросети с автодополнением кода

В мире технологий происходит настоящая революция. На передовом фронте этой революции стоят нейронные сети — мощные и удивительные инструменты искусственного интеллекта, которые сегодня изменяют наше представление о возможностях компьютеров. Сегодня мы познакомим вас с двумя моделями-помощниками с автодополнением кода: StarCoder и Codeium.

Превью для статьи

Деревья решений в pySpark: от семечка до параметрической оптимизации случайного леса

Меня зовут Клим, и сегодня я буду вашим проводником в PySpark MLlib. В этом посте я расскажу о простом для понимания, но в то же время достаточно эффективным алгоритме — дерево решений, а также его расширенной модификацией случайные леса решений.

Превью для статьи

Feature engineering и кластерный анализ клиентов на PySpark

Кластеризация клиентов является важным инструментом, так как позволяет лучше понимать клиентов и предлагать им более персонализированный сервис. Также она может быть полезна для компании в поиске решения при возникновении проблем с клиентами. Побробнее в публикации.

Превью для статьи

Оптимизации работы Jupyter notebook при помощи параллельных вычислений (Библиотека Joblib)

В данном посте я расскажу о возможностях применения параллельных вычислений в интерактивной среде Jupyter notebook языка Python.